
Belief Propagation Neural Networks

Abstract

We introduce belief propagation neural net-
works (BPNNs), a new neural architecture that
operates directly on factor graphs. BPNNs
draw inspiration from two lines of research:
variational methods used to approximate #P-
complete integration problems, and solving
simpler NP-complete problems by learning
from labeled examples. Without training,
BPNNs perform exact loopy belief propaga-
tion. During training, they learn to improve
upon the standard belief propagation updates
in a data-driven manner. Our evaluation con-
siders two integration tasks, computing the
partition function of Ising models and model
counting. Surprisingly, BPNNs are able to ef-
fectively learn from only 10’s of training ex-
amples. On the Ising model task, BPNNs fre-
quently provide 10-100 times more accurate
estimates than standard graph neural networks
and loopy belief propagation. For approximate
model counting, while state-of-the-art methods
often time out, BPNNs provide estimates of
comparable quality within a second.

1 INTRODUCTION

#P-complete integration problems arise in many do-
mains, from statistical physics to machine learning.
There is little hope that efficient, exact solutions to these
problems exist as they are at least as hard as NP-complete
decision problems. Significant research has been de-
voted across the fields of machine learning, statistics, and
statistical physics to develope variational and sampling
based methods to approximate these challenging prob-
lems (Chandler, 1987; Mézard et al., 2002; Wainwright
et al., 2008; Baxter, 2016; Owen, 2013).

Loopy belief propagation and the mean field approxima-
tion fall into the category of variational methods. These
algorithms reduce inference to an optimization problem,
but compute an estimate with weak (or without) guaran-
tees on its accuracy. Markov chain Monte Carlo is the
gold standard of sampling based methods, famously de-
livering a fully polynomial-time randomized approxima-
tion scheme (FPRAS) (Jerrum et al., 2004) to estimate
the permanent of a matrix, a problem known to be #P-
complete (Valiant, 1979). However these methods suffer
from high computational complexity. The FPRAS for
estimating the matrix permanent scales as O(n7 log4 n),
with respect to matrix dimensionality, with large coeffi-
cients thus making it practically unusable. Randomized
hashing methods are another, relatively recent, technique
for performing approximate integration (Gomes et al.,
2006; Chakraborty et al., 2016; Ermon et al., 2014).
While very successful in some domains, they repeatedly
solve NP-complete problems during execution making
them prohibitively slow for most applications.

Existing approximate inference techniques rely on hand-
crafted heuristics, which may or may not perform well
(in terms of runtime and accuracy) on different classes of
input instances. Inspired from recent work that has suc-
cessfully used neural networks to learn how to solve NP-
complete decision problems (Selsam et al., 2018; Prates
et al., 2019), we introduce belief propagation neural net-
works (BPNNs). These networks define a parameterized
computation graph that subsumes the computation per-
formed by traditional belief propagation on any given
graphical model. In particular, BPNNs can perform ex-
act belief propagation for a certain choice of the learn-
able parameters, but can improve on it through training.
The recent performance gains of neural networks have
been fueled by increasingly massive training datasets and
parallel computation power. Our BPNN violates both of
these paradigms. BPNNs outperform both modern neu-
ral networks with GPU compute power and classical al-
gorithms when trained on 10’s of examples using only



CPU computation. We perform experiments where we
estimate the partition function of an Ising model and ap-
proximate the number of satisfying solutions to a boolean
formula (model counting). On the Ising model task our
BPNN frequently estimates the partition function with
accuracy that is 10-100 times better than a maximally
powerful graph neural network, loopy belief propaga-
tion, and the mean field approximation. On the model
counting task our BPNN requires orders of magnitude
less computation than state-of-the-art randomized hash-
ing methods, while returning estimates with comparable
quality.

2 BACKGROUND

We provide background on belief propagation and graph
neural networks (GNN) to motivate and clarify belief
propagation neural networks (BPNN).

2.1 BELIEF PROPAGATION

We describe a general version of belief propaga-
tion (Yedidia et al., 2005) that operates on factor graphs.

Factor Graphs. A factor graph (Kschischang et al.,
2001; Yedidia et al., 2005) is a general representa-
tion of a distribution over n discrete random variables,
{X1, X2, . . . , Xn}. Let xi denote a possible state of the
ith variable. We use the shorthand p(x) = p(X1 =
x1, . . . , Xn = x1) for the joint probability mass func-
tion, where x = {x1, x2, . . . , xn} is a specific realiza-
tion of all n variables. Without loss of generality, p(x)
can be written as the product

p(x) =
1

Z

M∏
a=1

fa(xa). (1)

The functions f1, f2, . . . , fm each take some subset
of variables as arguments; function fa takes xa ⊂
{x1, x2, . . . , xn}. We require that all functions are non-
negative and finite. This makes p(x) a well defined prob-
ability distribution after normalizing by the distribution’s
partition function

Z =
∑
x

(
M∏
a=1

fa(xa)

)
. (2)

A factor graph is a bipartite graph that expresses the
factorization of the distribution in equation 1. A factor
graph’s nodes represent the n variables and m functions
present in equation 1. The nodes corresponding to func-
tions are referred to as factor nodes. Edges exist between
factor nodes and variables nodes if and only if the vari-
able is an argument to the corresponding function.

Message Updates. Belief propagation performs itera-
tive message pass. The message n(k)i→a(xi) from variable
node i to factor node a during iteration k is computed
according to the rule

n
(k)
i→ak(xi) :=

∏
c∈N (i)\a

m
(k−1)
c→i (xi). (3)

The message m(k)
a→i(xi) from factor node a to variable

node i during iteration k is then computed according to
the rule

m
(k)
a→i(xi) :=

∑
xa\xi

fa(xa)
∏

j∈N (a)\i

n
(k)
j→a(xj). (4)

The BP algorithm estimates approximate marginal prob-
abilities of each variable, referred to as beliefs. We de-
note the belief at variable node i, after message passing
iteration k is complete, as b(k)i (xi) which is computed as

b
(k)
i (xi) =

1

zi

∏
a∈N (i)

m
(k)
a→i(xi), (5)

where zi is the normalizing term

zi =
∑
xi

∏
a∈N (i)

m
(k)
a→i(xi). (6)

Similarly, BP computes joint beliefs over the sets of vari-
ables xa associated with each factor fa. We denote the
belief over variables xa, after message passing iteration
k is complete, as b(k)a (xa) which is computed as

b(k)a (xa) =
fa(xa)

za

∏
i∈N (a)

n
(k)
i→a(xi), (7)

where za is the normalizing term

za =
∑
xa

fa(xa)
∏

i∈N (a)

n
(k)
i→a(xi). (8)

Partition Function Approximation. The belief prop-
agation algorithm proceeds by iteratively updating vari-
able to factor messages (Equation 3) and factor to vari-
able messages (Equation 4) until they converge to fixed
values or a predefined maximum number of iterations is
reached. At this point the beliefs are used to compute
a variational approximation of the factor graph’s parti-
tion function. This approximation, originally developed
in statistical physics, is known as the Bethe free energy
FBethe ≈ − lnZ (Bethe, 1935). It is defined in terms of
the Bethe average energy UBethe and the Bethe entropy
HBethe.
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Definition 1. The Bethe average energy is

UBethe := −
M∑
a=1

∑
xa

ba(xa) ln fa(xa). (9)

Definition 2. The Bethe entropy is

HBethe :=−
M∑
a=1

∑
xa

ba(xa) ln ba(xa)

+

N∑
i=1

(di − 1)
∑
xi

bi(xi) ln bi(xi),

(10)

where di is the degree of variable node i.

Definition 3. The Bethe free energy is defined as
FBethe = UBethe −HBethe.

Numerically Stable Belief Propagation. Standard be-
lief propagation is generally performed in log-space for
numerical stability. The message n(k)i→a(xi) from vari-
able node i to factor node a during iteration k given in
Equation 3 becomes

n
(k)′

i→ak(xi) =
∑

c∈N (i)\a

m
(k−1)′
c→i (xi). (11)

The message m(k)
a→i(xi) from factor node a to variable

node i during iteration k given in Equation 4 becomes

m
(k)′

a→i(xi) = LSE
xa\xi

(
φa(xa) +

∑
j∈N (a)\i

n
(k)′

j→a(xj)

)
,

(12)
where we use the shorthand

LSE
i
wi = ln

(∑
i

exp(wi)

)
, (13)

and φa(xa) = ln (fa (xa)) denotes the log factors. Plug-
ging the definition of n(k)

′

i→ak(xi) from Equation 11 into
Equation 12 gives a rule for computing factor to variable
messages at iteration k in terms of factor to variable mes-
sages from iteration k − 1.

2.2 GRAPH NEURAL NETWORKS

We switch topics in this section to provide background
on graph neural networks (GNNs), a form of neural net-
work that operates directly on graphs. They have seen
recent success in representation learning on graph struc-
tured data. GNNs perform iterative message passing op-
erations between neighboring nodes in graphs, updating
the learned, hidden representation of each node after ev-
ery iteration. The computational similarities between

GNNs and belief propagation have been noted (Yoon
et al., 2018). We will revisit these similarities and also
less frequently noted differences in the next section. Xu
et al. (2018) showed that graph neural networks are at
most as powerful as the Weisfeiler-Lehman graph iso-
morphism test (Weisfeiler & Lehman, 1968), which is
a strong test that generally works well for discriminat-
ing between graphs. Additionally, Xu et al. (2018) pre-
sented a GNN architecture called the Graph Isomor-
phism Network (GIN), which they showed has discrimi-
native power equal to that of the Weisfeiler-Lehman test
and thus strong representational power. We will use GIN
as a baseline GNN for comparison in our experiments
because it is provably as discriminative as any GNN.

We now describe in detail the GIN architecture that we
use. Our architecture performs regression on graphs,
learning a function fGIN : G → R from graphs to a real
number. Our input is a graph G = (V,E) ∈ G with
node feature vectors h

(0)
v for v ∈ V and edge feature

vectors eu,v for (u, v) ∈ E. Our output is the num-
ber fGIN(G), which should ideally be close to the ground
truth value yG. Let h(k)

v denote the representation vector
corresponding to node v after the kth message passing
operation. We use a slightly modified GIN update to ac-
count for edge features as follows:

h(k)
v = MLP(k)

1

(
h(k−1)
v +

∑
u∈N (v)

MLP(k)
2

(
h(k−1)
u , eu,v

))
.

(14)

A K-layer GIN network with width M is defined by
K successive GIN updates as given by Equation 14,
where h

(k)
v ∈ RM is an M -dimensional feature vector

for k ∈ {1, 2, . . . ,K}. All MLPs within GIN updates
(except MLP(0)

2 ) are multilayer perceptrons with a sin-
gle hidden layer whose input, hidden, and output layers
all have dimensionality M . MLP(0)

2 is different in that
its input dimensionality is given by the dimensionality of
the original node feature representations. The final out-
put of our GIN network is given by

fGIN(G) = MLP(K+1)

(
K

CONCAT
k=1

∑
v∈G

hkv

)
, (15)

where we concatenate summed node feature vectors
from all layers and MLP(K+1) is a multilayer perceptron
with a single hidden layer. Its input and hidden layers
have dimensionality M · K and its output layer has di-
mensionality 1.
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3 BELIEF PROPAGATION NEURAL
NETWORK (BPNN)

We now present the architecture of our belief propagation
neural network (BPNN). It is analogous to general GNN
architectures, but two points must be emphasized. First,
BPNN can perform computations that standard GNNs
are not capable of. Second, BPNN subsumes belief prop-
agation as a strict generalization.

BPNN Iterative Layers. Our BPNN architecture adds
two multilayer perceptrons to the standard belief propa-
gation updates. BPNNs generalize Equation 12 and com-
pute factor to variable messages as

m
(k)′

a→i(xi) =

LSE
xa\xi

(
φa(xa) + LNE2

[ ∑
j∈N (a)\i

LNE1

(
n
(k)′

j→a(xj)
)])

,

(16)

where we use the shorthand,

LNE(h) = ln
(

MLPθ
(
exp(h)

))
, (17)

and MLPθ is a multilayer perceptron parameterized by
θ. We exponentiate before applying the multilayer per-
ceptron because we empirically find that this improves
training. Variable to factor messages are unchanged from
Equation 11.

Damped BPNN Iterative Layers. We add a residual
connection to message updates, which serves the same
purpose as damping in standard belief propagation. With
this modification, factor to variable messages become

m
(k)′

a→i(xi) = α0m
(k−1)′
a→i (xi) + (1− α0)

LSE
xa\xi

(
φa(xa) + LNE1

[ ∑
j∈N (a)\i

LNE2

(
n
(k)′

j→a(xj)
)])

.

(18)

Finally, we add a residual connection directly around
both MLPs. With this modification, factor to variable
messages become

m
(k)′

a→i(xi) = α0m
(k−1)′
a→i (xi) + (1− α0)LSE

xa\xi

(

φa(xa) + LNEα1
1

[ ∑
j∈N (a)\i

LNEα2
2

(
n
(k)′

j→a(xj)
)])

,

(19)

where we use the shorthand

LNEα(h) = αh+ (1−α) ln
(

MLPθ
(
exp(h)

))
. (20)

Weight Tying in BPNN Iterative Layers. Weights
can be tied between iterative layers in a BPNN, such that
θ1 = θ2 = · · · = θK for a K-layer BPNN. In this set-
ting the single iterative layer can either be applied for
a fixed number of iterations or until messages converge
as in standard belief propagation. In the second setting
BPNNs become learned, iterative fixed point solvers.

Bethe Free Energy Layer. A K-layer BPNN applies
K iterative layers followed by a final Bethe free energy
layer. This final layer is an MLP that takes a concate-
nation of Bethe average energy and entropy terms across
all iterations, summed across factors within iterations but
not factor states (which is analogous to the summation
and concatenation of node feature vectors in a standard
GNN). It outputs a scalar as follows:

fBPNN(Gfactor) = MLP(K+1)
θ

[
K

CONCAT
k=1

(

CONCAT
( M∑
a=1

b(k)a (xa) ln fa(xa),

−
M∑
a=1

b(k)a (xa) ln b
(k)
a (xa),

N∑
i=1

(di − 1)b
(k)
i (xi) ln b

(k)
i (xi)

))]
.

(21)

3.1 PROPERTIES OF BPNN

Proposition 1. Belief propagation neural networks sub-
sume belief propagation as a strict generalization.

Please see the appendix for a proof of proposition 1.

The following theorem formalizes a particular instance
of computation that BPNNs are capable of that GNNs
are not. Furthermore, GNNs aggregate messages be-
tween neighboring nodes in a permutation invariant man-
ner. BPNNs achieve this behavior with pairwise fac-
tors. However, BPNNs that operate on factors over more
than 2 variables leverage more complicated variable de-
pendencies that are discarded by permutation invariant
GNNs.

Theorem 1. Belief propagation neural networks with
weight tying between layers converge within l iterations
on tree structured factor graphs with height l.

Proof. If we consider a BPNN with weight tying, then
regardless of the number of iterations or layers, the out-
put messages are the same if the input messages are the
same. Without loss of generality, let us first consider any
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node r as the root node, and consider all the messages on
the path from the leaf nodes through r. Let dr,i denote
the depth of the sub-tree with root i when we consider r
as the root (e.g. for a leaf node i, dr,i = 1). We use the
following induction argument:

• At iteration 1, the message from all nodes with
dr,i = 1 to their parents will be fixed for subse-
quent iterations since the inputs to the BPNN for
these messages are the same.

• If at iteration t−1, the message from all nodes with
dr,i ≤ t − 1 to their parents are fixed for all subse-
quent iterations, then the inputs to the BPNN for all
the messages from all nodes with dr,i = t to their
parents will be fixed (since they depend on lower
level messages that are fixed). Therefore, at itera-
tion t, the messages from all the nodes with dr,i ≤ t
to their parents will be fixed because of weight tying
between BPNN layers.

• The maximum tree depth is l, so maxi dr,i ≤ l.
From the induction argument above, after at most l
iterations, all the messages along the path from leaf
nodes to r will be fixed.

Since the BPNN layer performs the operation over all
nodes, this above argument is valid for all nodes when
we consider them as root nodes. Therefore, all messages
will be fixed after at most l iterations, which completes
the proof.

4 EXPERIMENTS

4.1 ISING MODEL

We follow a common experimental setup used to evalu-
ate approximate integration methods (Hazan & Jaakkola,
2012; Ermon et al., 2013). We randomly generated grid
structured Ising models whose partition functions can be
computed exactly using the junction tree algorithm (Lau-
ritzen & Spiegelhalter, 1988). We used our belief propa-
gation network to estimate the partition function of a set
of random models and compared with loopy belief prop-
agation (Yedidia et al., 2005; Murphy et al., 1999), the
Graph Isomorphism Network GNN, and the mean field
approximation (Wainwright et al., 2008).

Data Generation. An N × N Ising model is defined
over binary variables xi ∈ {−1, 1} for i = 1, 2, . . . , N2,
where each variable represents a spin. Each spin has a
local field parameter Ji which corresponds to its local
potential function Ji(xi) = Jixi. Each spin variable has
4 neighbors, unless it occupies a grid edge. Neighbor-
ing spins interact with coupling potentials Ji,j(xi, xj) =

Ji,jxixj . The probability of a complete variable config-
uration x = {x1, . . . , xN2} is defined to be

p(x) =
1

Z
exp

∑
i∈V

Jixi +
∑

(i,j)∈E

Ji,jxixj

 , (22)

where the normalization constant Z, or partition func-
tion, is defined to be

Z =
∑
x

exp

∑
i∈V

Jixi +
∑

(i,j)∈E

Ji,jxixj

 . (23)

We performed experiments using datasets of randomly
generated Ising models. Each dataset was created by first
choosing N , cmax, and fmax. We sampled N × N Ising
models according to the following process

c ∼ Unif[0, cmax),

f ∼ Unif[0, fmax),

(Ji)i∈V
i.i.d.∼ Unif[−f, f),

(Ji,j)(i,j)∈E
i.i.d.∼ Unif[0, c).

Training Protocol. We trained a 10 layer BPNN to
predict the natural logarithm of an Ising model’s partition
function (Z). We simplified the model by freezing the
final MLP to always output the Bethe free energy com-
puted from the final layer beliefs. We set the residual
parameters to α0 = α1 = α2 = .5, and trained on 50 at-
tractive Ising models generated with N = 10, fmax = .1,
and cmax = 5. We used mean squared error as our train-
ing loss. We used the Adam optimizer (Kingma & Ba,
2015) with an initial learning rate of .0005 and trained for
100 epochs, with a decay of .5 after 50 epochs. Batch-
ing was over the entire training set (of size 50) with one
optimization step per epoch.

Baselines. We trained a 10 layer GNN with width 4 on
the same dataset of attractive Ising models that we used
for our BPNN. We set edge features to the coupling po-
tentials; that is, eu,v = Ju,v . We set the initial node
representations to the local field potentials of each node,
h
(0)
v = Jv . We used the same training loss and opti-

mizer as for our BPNN. We used an initial learning rate
of 0.001 and trained for 5k epochs, decaying the learning
rate by .5 every 2k epochs.

We consider two additional baselines: Bethe approxima-
tion from running standard loopy belief propagation and
mean field approximation. We used the libDAI (Mooij,
2010) implementation for both. We ran loopy belief
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Figure 1: Each point represents the root mean squared error (RMSE, y-axis) of the specified method on a test set of 50
Ising models sampled with the parameters fmax and cmax (x-axis). The leftmost point shows results for test data drawn
from the same distribution as training. BPNN significantly improves upon loopy belief propagation (LBP) for both in
and out of distribution data. BPNN also significantly outperforms GNN on out of distribution data and larger models.

propagation with a variety of configurations and show
results for two settings that have very different conver-
gence properties: (1) run for a maximum of 10 iterations
with parallel updates and damping set to .5, and (2) run
for a maximum of 1000 iterations with sequential up-
dates using a random sequence and no damping.

Out of Distribution Generalization. We tested all
methods on data sampled from distributions that differed
from the training distribution. We sampled test data from
distributions with cmax and fmax increased by factors of
2 and 10 from their training values, with N set to 14
(for 196 variables instead of the 100 seen during train-
ing). Full test results are shown in figure 1. The leftmost
point in the left figure shows results for test data that was
drawn from the same distribution used for training the
BPNN and GNN. The BPNN and GNN perform simi-
larly for data drawn from the same distribution seen dur-
ing training. However, our BPNN significantly outper-
forms the GNN when the test distribution differs from
the training distribution and when generalizing to the
larger models. Our BPNN also significantly outperforms
loopy belief propagation, both for test data drawn from
the training distribution and for out of distribution data.

4.2 MODEL COUNTING

In this section we use our BPNN to estimate the num-
ber of satisfy solutions to a boolean formula. This is
a classic #P-complete problem, commonly known as
approximate model counting. We consider the gen-
eral case where input formulas over n boolean vari-
ables, {X1, X2, . . . , Xn}, are in conjunctive normal

form (CNF). Formulas in CNF form are a conjunction
of clauses, where each clause is a disjunction of literals.
A literal is either a variable or its negation.

Dataset. We evaluated the performance of our BPNN
using the suite of benchmarks from Soos & Meel (2019).
Some of these benchmarks come with a sampling set.
The sampling set redefines the model counting problem,
asking how many configurations of variables in the sam-
pling set correspond to at least one complete variable
configuration that satisfies the formula. (A formula with
n variables may have at most 2n satisfying solutions, but
a sampling set over i variables will restrict the number
of solutions to at most 2i). We stripped all problems
of sampling sets since they are outside the scope of this
work. We ran the exact model counter DSharp (Muise
et al., 2012) on all benchmarks with a timeout of 5k sec-
onds to obtain ground truth model counts for 928 of the
1,896 benchmarks. Only 50 of these problems had more
than 5 variables in the largest factor, so we discarded
these problems and set the BPNN architecture to run on
factors over 5 variables. We categorized the remaining
878 by their arcane names into groupings. With some
sleuthing we determined that categories ‘or 50’, ‘or 60’,
‘or 70’, and ‘or 100’ contain network DQMR problems
with 150, 121, 111, and 138 benchmarks per category
respectively. Categories ‘75’ and ‘90’ contain network
grid problems with 20 and 107 benchmarks per cate-
gory respectively. Category ‘blasted’ conains bit-blasted
versions of SMTLIB ( satisfiability modulo theories li-
brary) benchmarks (Chakraborty et al., 2016) and has
147 benchmarks. Category ‘s’ contains representations
of circuits with a subset of outputs randomly xor-ed and
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has 68 benchmarks. We discarded 4 categories that con-
tained fewer than 10 benchmarks. For each category that
contained more than 10 benchmarks, we split 70% into
the training set and left the remaining benchmarks in
the test set. We then performed two splits of the train-
ing set for training and validation; for each category we
(1) trained on a random sampling of 70% of the train-
ing problems and performed validation on the remaining
30% and (2) trained on 70% of the training problems that
DSharp solved fastest and performed validation on the
remaining 30% that took longest for DSharp to solve.
These hard validation sets are significantly more chal-
lenging for Dsharp. The median runtime in each cate-
gory’s hard validation set is 4 to 15 times longer than the
longest runtime in each corresponding easy training set.

Baseline Approximate Model Counters. For compar-
ison, we ran the state of the art approximate model
counter ApproxMC31 (Chakraborty et al., 2016; Soos &
Meel, 2019) on all benchmarks. ApproxMC3 is a ran-
domized hashing algorithm that returns an estimate of
the model count that is guaranteed to be within a multi-
plicative factor of the exact model count with high prob-
ability. Improving the guarantee, either by tightening the
multiplicative factor or increasing the confidence, will
increase the algorithm’s runtime. We ran ApproxMC3
with the default parameters; confidence set to 0.81 and
epsilon set to 16.

We also compare with the state of the art randomized
hashing algorithm F22 from (Achlioptas & Theodor-
opoulos, 2017; Achlioptas et al., 2018), run with Crypto-
MiniSat53 (Soos et al., 2009; Soos & Meel, 2019). This
algorithm gives up the probabilistic guarantee that the
returned estimate will be within a multiplicative factor
of the true model count in return for significantly in-
creased computational efficiency. We computed only
a lower bound and ran F2 with variables appearing in
only 3 clauses. This significantly speeds up the reported
results (Achlioptas & Theodoropoulos, 2017, p.14), at
some additional cost to accuracy. For example, on the
problem ‘blasted case37’ Achlioptas & Theodoropou-
los (2017, p.14) report an estimate of log2(#models) ≈
151.02 and a runtime of 4149.9 seconds. Running F2
with variables appearing in only 3 clauses, we computed
the lower bound on log2(#models) of 148 in 2 seconds.

As a preprocessing step, we attempted to find a set
of variables that define a minimal independent support
(MIS) (Ivrii et al., 2016) for each benchmark using the
authors’ code4 with a timeout of 1k seconds. A set of

1https://github.com/meelgroup/ApproxMC
2https://github.com/ptheod/F2
3https://github.com/msoos/cryptominisat
4https://github.com/meelgroup/mis

variables that define a MIS for a boolean formula fully
determine the values of the remaining variables. Ran-
domized hashing algorithms can run significantly faster
when given a set of variables that define a MIS. When
we could find a set of variables that define a MIS, we
recorded the time that each randomized hashing algo-
rithm required without the MIS and the sum of the time
to find the MIS and perform randomized hashing with
the MIS. We report the minimum of these two times.

We also attempted to train a GNN, using the architec-
ture from Selsam et al. (2018) to perform regression in-
stead of classification. We used the author’s code, mak-
ing slight modifications to perform regression. However,
we were not successful in achieving non-trivial learning.

Training Protocol. We trained our BPNN to predict
the natural logarithm of the number of satisfying solu-
tions to an input formula in CNF form. The boolean
formula was converted into a factor graph where each
clause corresponds to a factor. Factors take the value
of 1 for variable configurations that satisfy the clause
and 0 for variable configurations that do not satisfy the
clause. The partition function of this factor graph is
equal to the number of satisfying solutions. All exper-
iments were run with the same hyper-parameters. We
trained 2, 3, 5, and 10 layer BPNNs (see the appendix
for complete results). ReLUs in the Bethe free energy
layer where shifted, ReLU′(x) = shift + f(x − shift),
with the shift set to -500. We set the residual parame-
ters to α0 = α1 = α2 = .5, using mean squared error
between the natural logarithm of the number of satisfy-
ing solutions and the BPNN estimate as our training loss.
We used the Adam optimizer (Kingma & Ba, 2015) with
an initial learning rate of .0001. We trained for 1000
epochs. We decayed the learning rate, multiplying it by
.5 every 100 epochs. We performed batching over the
entire training set with one optimization step per epoch.
We used two MLPs per layer as in equation 16 and a final
Bethe free energy layer.

Learning from Limited Data. We demonstrate that
we are able to learn in an extremely data limited regime
in table 1. Results in each row titled ‘Random Split’
were obtained by training on 70% of benchmarks from
a single category while holding out a random 30% of the
benchmarks for validation. This left only 9 to 73 bench-
marks for training. In contrast, prior work has performed
approximate model counting on boolean formulas in dis-
junctive normal form (DNF) by creating a large training
set of 100k examples that whose model counts can be ap-
proximated with an efficient polynomial time algorithm.
Such an algorithm does not exist for model counting on
CNF formulas, making this approach intractable. How-
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Figure 2: Error in estimate log model count is plot-
ted against the exact model count for ‘or 50’ training
and validation benchmarks. BPNN achieves a validation
RMSE of 1.97 on this category compared with a RMSE
of 2.5 for F2 across all training problems.

ever, we achieve training and validation RMSE com-
parable to the randomized hashing method F2 across a
range of benchmark categories using only 10’s of train-
ing problems (F2 generally has an RMSE between 2 and
3). Figure 2 shows estimates by our BPNN on the cate-
gory ‘or 50’ compared with the randomized hashing al-
gorithms ApproxMC3 and F2. While ApproxMC3 pro-
vides much better estimates than BPNN, it does so by
using signficantly more computation as we will see. See
Appendix for complete results for ApproxMC3 and F2.

Generalizing from Easy Data to Hard Data. BPNN
trained on ‘easy’ problems can still generalize to ‘hard’
problems. The rows in table 1 labeled ‘Easy / Hard’
were obtained by training on 70% of the benchmarks in
a single category that were easiest for DSharp to solve,
and validating on the remaining 30%. While validation
RMSE is worse than training RMSE here, the validation
problems are significantly more difficult. DSharp solving
time among validation sets is 4-15 times longer than the
longest solving time in each corresponding training set.
Notably, BPNN significantly outperformed F2 in terms
of validation accuracy on the category ‘90’, even when
trained on only the easiest problems (F2 has a RMSE of
12.4 on this category). This category was also the sec-
ond hardest for ApproxMC3 with a 16% completion rate
within the time limit of 5k seconds. This demonstrates
that BPNNs have the potential to be trained on available
data and then generalize to related problems that are too
difficult for any current methods.

BPNN RMSE by SAT Category
Benchmark Train / Val Train / Val
Category Split RMSE

‘or 50’ Random Split 1.92 / 1.97
Easy / Hard 1.56 / 5.50

‘or 60’ Random Split 2.41 / 2.57
Easy / Hard 1.79 / 5.85

‘or 70’ Random Split 1.85 / 2.55
Easy / Hard 1.69 / 3.59

‘or 100’ Random Split 2.85 / 3.24
Easy / Hard 2.49 / 6.20

‘blasted’ Random Split 3.12 / 4.14
Easy / Hard 2.68 / 307.77

‘s’ Random Split 300.02 / 15.40
Easy / Hard 1.49 / 3755.19

‘75’ Random Split 2.02 / 3.40
Easy / Hard 1.73 / 14.78

‘90’ Random Split 2.85 / 2.94
Easy / Hard 5.00 / 6.65

Table 1: RMSE of BPNN for each training/validation set.
’Random Split’ rows show that BPNNs are capable of
learning a distribution from a tiny dataset of only 10s of
training problems. ‘Easy / Hard’ rows show that BPNNs
are able to generalize from simple training problems to
significantly more complex validation problems.

BPNNs Provide Excellent Computational Value.
Compared with randomized hashing techniques, BPNNs
provide a better tradeoff between accuracy and runtime.
The RMSE values reported in table 1 are large compared
with the RMSE values for ApproxMC3, which range
from .03 to .07 for problems that ApproxMC3 could
complete within the 5k second time limit. However,
even when excluding category ‘s’ (ApproxMC3 could
not solve any problems in category ‘s’ within the time
limit), ApproxMC3 could only complete 75% of the re-
maining training problems. Among the problems that
it could solve we calculated the ratio of ApproxMC3’s
runtime to our BPNN’s runtime. We found median,
mean, and maximum ratios of 41, 6.5k, and 130k respec-
tively, making ApproxMC incomparably slower when
only considering problems that it could solve.

However, ApproxMC3 is not the fastest randomized
hashing algorithm. It sacrifices speed for strict proba-
bilistic guarantees on the quality of its estimate. F2 deliv-
ered significant speedups in our experiments, using state-
of-the-art hashing matrices derived from low density par-
ity check error-correcting codes. F2 solves 93% of the
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training benchmarks within the time limit. We found me-
dian, mean, and maximum ratios of 4.6, 45, and 2800
between ApproxMC3’s and F2’s runtime on only those
problems that could be solved by both methods.

Still, our BPNN is in a separate performance class from
F2. We computed runtime ratios between F2 and our
BPNN on only those the problems that F2 completed.
We found median, mean, and maximum ratios of 32,
1200, and 45000 respectively. BPNN computes model
counting estimates with accuracy on par with F2 while
generally using orders of magnitude less computation.
This gives the quality of BPNN’s estimates an excellent
computational value compared to randomized hashing
approaches. Furthermore, note that we ran our BPNN on
a cpu throughout comparisons with randomized hashing
approaches. Note that we could achieve orders of mag-
nitude additional speedups by running the BPNN on a
GPU with parallel computation (Bixler & Huang, 2018).

Learning Across Domains. We also trained our
BPNN on a random sampling of 70% of the problems
from the ‘or 50’, ‘or 60’, ‘or 70’, ‘or 100’, ‘blasted’,
‘75’, and ‘90’ categories. These problems span the do-
mains of network grid problems, bit-blasted versions of
SMTLIB benchmarks, and network DQMR problems.
We trained a 3 layer BPNN according to the same proto-
col followed for individual category training, except that
we stopped early after 660 epochs. The BPNN achieved
a final training RMSE of 4.4, validation RMSE of 5.4,
and test RMSE of 6.4, demonstrating that the BPNN is
capable of capturing a broad distribution that spans mul-
tiple domains from a small training set.

5 RELATED WORK

Apart from background previously mentioned, the most
similar work to ours is Abboud et al. (2020). Here, the
authors use a graph neural network to perform approx-
imate weighted disjunctive normal form (DNF) count-
ing. This is a special case of weighted model counting
(weighted model counting assigns a weight to every sat-
isfying solution of a boolean formula and asks for the
sum of these weights). Weighted DNF counting is a #P-
complete problem. However, in contrast to model count-
ing on CNF formulas, there exists anO(nm) polynomial
time approximation algorithm for weighted DNF count-
ing (where n is the number of variables and m is the
number of clauses in the DNF formula). The authors
leverage this fact to generate a large training dataset of
100k DNF formulas with approximate solutions. In com-
parison, our BPNN can learn and generalize from a very
small training dataset of less than 50 problems. This re-
sult provides the significant future work alluded to in the

conclusion of Abboud et al. (2020). “Similarly, proba-
bilistic inference in graphical models is #P-hard and re-
mains NP-hard to approximate (as is weighted #CNF).
Thus, significant work must be done in this direction to
reach results of practical use.”

Yoon et al. (2018) perform marginal inference us-
ing GNNs on relatively small smalls. Heess et al.
(2013) consider improving message passing in expec-
tation propagation for probabilistic programming, when
users can specify arbitrary code to define factors and the
optimal updates are intractable. Wiseman & Kim (2019)
consider learning Markov random fields and address the
problem of estimating marginal likelihoods (generally
intractable to compute precisely). They use a transformer
network that is faster than loopy BP but computes com-
parable estimates. This allows for faster amortized in-
ference during training when likelihoods must be com-
puted at every training step. In contrast, BPNNs signifi-
cantly outperform LBP and generalize to out of distribu-
tion data, although they are no faster than LBP.

6 CONCLUSION

We introduced belief propagation neural networks, a
GNN architecture that generalizes BP and can perform
computations impossible for standard GNNs. We em-
pirically demonstrated that BPNNs can learn from tiny
data sets containing only 10s of training points, and gen-
eralize to test data drawn from a different distribution
than seen during training. BPNNs significantly outper-
form loopy belief propagation and standard graph neural
networks in terms of accuracy. BPNNs provide excel-
lent computational efficiency, running orders of magni-
tudes faster than state-of-the-art randomized hashing al-
gorithms while maintaining comparable accuracy.
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A PROOFS

Proposition 1. Consider a BPNN with weight tying be-
tween layers where the single iterative layer is applied
until the messages converge. This particular architecture
performs belief propagation and returns the exact Bethe
free energy with the following choice of parameters:

• Bias parameters are set to 0 and weight matrices to
identity matrices in the single iterative layer.

• Bias parameters are set to 0 in the final Bethe free
energy layer.

• All weight matrices are set identity matrices in the
final Bethe free energy layer, except for the final
weight matrix. The final matrix is set all 0’s ex-
cept for 1’s along the diagonal for corresponding to
terms in the Bethe free energy.

• All ReLUs are shifted, ReLU′(x) = shift + f(x −
shift). There exists a shift small enough such that
ReLUs never modify their inputs.

Other configurations of BPNNs strictly generalize belief
propagation.

B ADDITIONAL EXPERIMENTS (SAT)

Table 2 shows the root mean squared error (RMSE)
of estimates from the approximate model counters Ap-
proxMC3 and F2 across all training benchmarks in each
category. Error was computed as the difference between
the natural logarithm of the number of satisfying solu-
tions and the estimate. The fraction of benchmarks that
each approximate counter was able to complete within
the time limit of 5k seconds is also shown. For each
benchmark category we show runtime percentiles for
ApproxMC3, F2, and the exact model counter DSharp.
The DSharp runtime column shows the runtime dividing
our easy training sets and hard validation sets for each
benchmark category. It also shows the median run time
of each hard validation set (85th percentile). The me-
dian runtime in each category’s hard validation set is 4
to 15 times longer than the longest runtime in each cor-
responding easy training set. We observe that F2 is gen-
erally tens or hundreds of times faster than ApproxMC3.
On these benchmarks DSharp is generally faster than F2,
however there exist problems that can be solved much
faster by randomized hashing (ApproxMC3 or F2) than
by DSharp (Achlioptas et al., 2018; Soos & Meel, 2019).

Runtime. Table 3 shows runtime percentiles in sec-
onds for DSharp, ApproxMC3, F2, and a 2 layer BPNN

Baselines RMSE by SAT Category
RMSE (% Completed)

Category ApproxMC3 F2

‘or 50’ 0.07 (89%) 2.4 (100%)
‘or 60’ 0.07 (87%) 2.3 (100%)
‘or 70’ 0.06 (78%) 2.4 (100%)
‘or 100’ 0.06 (73%) 2.4 (100%)
‘blasted’ 0.04 (80%) 2.4 (84%)
‘s’ – (0%) 2.9 (81%)
‘75’ 0.04 (92%) 2.0 (100%)
‘90’ 0.03 (16%) 12.4 (68%)

Table 2: Root mean squared error (RMSE) of estimates
of the natural logarithm of the number of satisfying solu-
tions is shown. The fraction of benchmarks within each
category that each approximate counter was able to com-
plete within the time limit of 5k seconds is shown in
parentheses.

run on all benchmarks in each category in the training
dataset. We ran all methods on a cpu. Note that we
could achieve orders of magnitude speedups by running
the BPNN on a GPU with parallel computation (Bixler
& Huang, 2018). However, we still significantly outper-
form all other methods, generally by orders of magnitude
on difficult problems.
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Runtimes By Percentile

Category DSharp (0/70/85/100) ApproxMC3 (0/70/100) F2 (0/70/100) BPNN (0/70/100)

‘or 50’ 0.0 / 0.8 / 12.4 / 48.1 0.1 / 336.6 / 5k 0.2 / 4.0 / 89.9 0.0 / 0.0 / 0.1
‘or 60’ 0.0 / 0.3 / 2.1 / 79.1 0.1 / 276.6 / 5k 0.2 / 5.0 / 353.2 0.1 / 0.1 / 0.1
‘or 70’ 0.0 / 0.7 / 3.6 / 46.6 0.1 / 748.3 / 5k 0.2 / 11.9 / 491.3 0.1 / 0.1 / 0.1
‘or 100’ 0.0 / 0.3 / 4.8 / 54.2 0.1 / 1918.8 / 5k 0.2 / 33.0 / 3021.1 0.1 / 0.1 / 0.2
‘blasted’ 0.0 / 1.7 / 29.3 / 1390.8 0.0 / 952.6 / 5k 0.0 / 742.3 / 5k 0.0 / 0.3 / 1.2
‘s’ 0.0 / 0.7 / 2.9 / 101.8 5k / 5k / 5k 0.2 / 252.9 / 5k 0.0 / 0.2 / 5.0
‘75’ 0.0 / 6.0 / 29.0 / 160.3 279.6 / 805.1 / 5k 1.1 / 2.3 / 9.0 0.1 / 0.2 / 0.3
‘90’ 0.0 / 1.8 / 16.7 / 479.9 326.3 / 5k / 5k 1.1 / 5k / 5k 0.1 / 0.4 / 0.7

Table 3: Runtime percentiles (in seconds) are shown for DSharp, ApproxMC3, F2, and a 2 layer BPNN. Percentiles
are computed separately for each category’s training dataset.
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